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Three types of sphere packing are described which show properties that have

never been observed before: a certain set of generating symmetry operations

corresponds to a parameter range in P6222 that is not simply connected, but

disintegrates into two disjoint non-congruent regions; the minimal sphere-

packing density is different for these two regions; two sphere packings from

different regions cannot be deformed into each other without opening sphere

contacts although their sphere-packing graphs are isomorphic in the graph-

theoretical sense. Two heterogeneous crystal nets with different symmetry

described by Delgado-Friedrichs & O'Keeffe [Acta Cryst. (2003), A59, 351±360]

show a similar behaviour. They are related to a type of tetragonal sphere

packing with likewise unusual properties.

1. Introduction

Sphere packings form a useful tool to compare and to char-

acterize crystal structures. Complete information, however, is

available only on homogeneous sphere packings with cubic

(Fischer, 1973, 1974), tetragonal (Fischer, 1991a,b, 1993) and

triclinic (Fischer & Koch, 2002) symmetry. Within the scope of

a current research project, all types of hexagonal and trigonal

sphere packing (Sowa et al., 2003; Sowa & Koch, 2004) will be

derived in addition. In the course of these investigations, three

types of sphere packing were found which show properties

that have never been observed before: a certain set of

generating symmetry operations corresponds to a parameter

range that is not simply connected but disintegrates into two

disjoint non-congruent regions; and the minimal sphere-

packing density is different for these two regions.

2. Definitions

A set of non-intersecting spheres with the symmetry of a space

group G is called a sphere packing if a chain of spheres with

mutual contact connects any two spheres. It is called a

homogeneous sphere packing if all its spheres are symme-

trically equivalent (e.g. Fischer, 1991a). In the following, only

homogeneous sphere packings will be considered.

Each sphere packing can uniquely be assigned to a graph, its

sphere-packing graph, as follows: (i) each centre of a sphere is

replaced by a vertex of the graph; (ii) two such vertices are

connected by an edge of the graph if and only if the corre-

sponding spheres are in contact (cf. Mittelpunkts®gur, Heesch

& Laves, 1933; Fischer, 1971).

Two sphere packings are assigned to the same type if a

biunique mapping exists that sends the spheres of the ®rst

sphere packing onto the spheres of the second one under

preservation of all contact relationships between spheres, i.e. if

the corresponding two sphere-packing graphs are isomorphic.

Each sphere-packing type is designated by a symbol k/m/fn

as was ®rst introduced by Fischer (1971): k is the number of

contacts per sphere, m is the length of the shortest mesh within

the sphere packing, f indicates the highest crystal family for a

sphere packing of that type (c: cubic, h: hexagonal/trigonal, t:

tetragonal) and n is an arbitrary number.

A certain sphere packing is uniquely described by its

generating symmetry group G together with its metrical

parameters and the coordinate parameters of the centre of an

arbitrarily chosen reference sphere. Distance calculations then

yield the coordinates of the centres of all neighbouring

spheres. If the point con®guration of the sphere centres refers

to a lattice complex with three degrees of freedom, i.e. if it

belongs to a general Wyckoff position, each neighbouring

sphere corresponds uniquely to that symmetry operation

gs 2 G that maps the reference sphere onto the neighbouring

one. A complete set {gs} of such symmetry operations is called

a set of generators of the sphere packing (cf. Fischer, 1991a). It

is not unique because the reference sphere may arbitrarily be

chosen. Each set of sphere-packing generators forms as well a

set of generators of the corresponding space group.

The density � of a sphere packing is de®ned as the volume of

all spheres within one unit cell divided by the volume of the

unit cell. For most sphere-packing types, a minimal density

�min of all corresponding sphere packings may uniquely be

calculated.
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3. Parameter regions

In most cases, a sphere packing with symmetry G may be

deformed without losing symmetry or sphere contacts. Then,

the corresponding sphere-packing type occurs with n � 1

degrees of freedom, i.e. the metrical and coordinate param-

eters of an entire n-dimensional parameter region give rise to

sphere packings of that type. All these sphere packings refer

to analogous sets of generators.

Each symmetry operation belonging to NE(G), the Eucli-

dean normalizer of G (e.g. cf. Koch & Fischer, 2002), maps a

certain sphere packing either onto itself or onto a congruent

one. Simultaneously, it maps by conjugation a corresponding

set of sphere-packing generators onto a symmetrically

equivalent or normalizer-equivalent set. Furthermore, it sends

the respective parameter region onto a congruent region that

is symmetrically equivalent or normalizer-equivalent to the

original one.

Normally, each such parameter region corresponds

uniquely to a certain set of sphere-packing generators and vice

versa. Very few exceptional cases, however, are known where

a given set of sphere-packing generators belongs to two

disjoint, but congruent, regions. The sphere packings of type

5/3/t23 with a two-dimensional parameter region in space

group I41/a form such an example (cf. Fischer, 1993). Sphere-

packing parameters are e.g. x = y = 0.108, z = 0.240 and c/a =

0.450. The corresponding set of generators consists of the

twofold rotation around 00z, the fourfold roto-inversions with

inversion centre at 000 and the 43 screw rotations around
1
4

1
4 z. The Euclidean normalizer NE(I41/a) = P42/nnm

��aÿ b�=2; �a� b�=2; c=2� contains the twofold rotation

around xx0 (cf. Koch & Fischer, 2002) that maps this set of

generators onto itself and, simultaneously, maps the sphere

packing with the above-mentioned parameters onto a

congruent one with coordinates x = y = 0.108 and z = ÿ0.240.

Both sphere packings belong to disjoint, but congruent,

parameter regions. It is a necessary condition for such a

behaviour that no sphere packing with minimal density exists

for the type under consideration. The minimum of density for

sphere-packing type 5/3/t23 refers to the coordinate param-

eters 1
8

1
8

1
8 and the axial ratio c/a = 1, i.e. to a sphere packing of

type 6/3/t40 with one additional contact per sphere.1

The properties of the recently found examples are much

stranger: two disjoint non-congruent parameter regions

belong to one and the same set of sphere-packing generators;

the minimal sphere-packing density is different for these two

regions; a sphere packing belonging to one of these regions

cannot be deformed into a sphere packing of the other region

without opening sphere contacts.

4. Unusual sphere packings in P6222

In the course of the examination of the general position of

P6222, the sphere-packing type 3/4/h3 attracted special

attention. A corresponding set of sphere-packing generators

consists of three twofold rotations with rotation axes e.g. at

2x, x, 1
6; x + 1

2, 2x, 0; and 1
2, 0, z. The respective parameter range

in the four-dimensional x; y; z; c=a space has two degrees of

freedom and is bounded by six one-dimensional and six zero-

dimensional parameter regions. Fig. 1 shows its projection

onto the x; c=a plane. The number of sphere-packing neigh-

bours increases from three to four at all edges of the

boundary; it increases to ®ve or six at the vertices. Parameters

for the sphere packing of type 3/4/h3 with minimal density are

marked in Fig. 1 by a black square.

A closer look at the boundary reveals an unusual behaviour.

One and the same symmetry operation, namely a twofold

rotation around x00, gives rise to the additional neighbours of

two different bordering parameter regions (red edges in

Fig. 1). As a consequence, both parameter regions correspond

to the same set of sphere-packing generators and, therefore,

should be assigned to the same type of sphere packing (cf. x2),

namely 4/3/h9. On the other hand, the corresponding ranges of

the parameter c/a are different and, therefore, both regions

cannot be mapped onto another by a symmetry operation of

the Euclidean normalizer NE(P6222) = P6422 (a, b, c/2).

Moreover, the minimal sphere-packing density �min

(cf. Table 1) for both parameter regions is different and other

sphere-packing types (cf. Fig. 1) bound these regions. A

similar behaviour has never been observed before.

Table 1 gives information on all sphere-packing types at the

boundary of the parameter range of 3/4/h3: the sphere-packing

parameters x, y, z and c/a and the value of �min for the

respective sphere packings with minimal density. Fig. 2

displays the graphs of three sphere packings of type 3/4/h3.

Their parameters are marked in Fig. 1 by a black square

(minimal density) and by black triangles. Figs. 2(a) and 2(c)

(upper and lower triangle, respectively, in Fig. 1) show

different distortions compared with a sphere packing with

Figure 1
Projection of the parameter region of sphere-packing type 3/4/h3 and its
boundary: sphere packings with minimal density are marked by squares
(cf. Figs. 2b and 3).

1 A net corresponding to a sphere packing of type 5/3/t23 has the maximal
combinatorial symmetry (cf. Delgado-Friedrichs & O'Keeffe, 2003) I41/amd
16g ..2 xx0. With this symmetry, however, the tetrahedra of spheres contained
in each such sphere packing are necessarily distorted to ¯at squares.



minimal density (Fig. 2b). The red and blue edges intersect in

the projection in Fig. 2(c) in contrast to Fig. 2(a). However, all

three sphere packings of type 3/4/h3 may be deformed into

one another without losing sphere contacts.

Two sphere packings with minimal densities of type 4/3/h9

belonging to the two different parameter regions (red squares

in Fig. 1) are shown in Fig. 3. Because of their identical sets of

generators, the two graphs are clearly isomorphic. Never-

theless, they show differences that should not be neglected in

crystallography. Both sphere packings are built up from screws

around the 62 axes. Two of them are marked in red and blue.

Pairs of spheres from neighbouring screws are connected by

additional contacts giving rise to tetrahedra. The mutual

arrangement of the screws, however, is different in the two

sphere packings: the screws are separate in Fig. 3(a), whereas

neighbouring screws are interwoven in Fig. 3(b). As a conse-

quence, the two graphs cannot be distorted into each other

(although they are isomorphic) and the two sphere packings

cannot be deformed into each other without opening sphere

contacts.2 In order to distinguish the two variants of the

sphere-packing type 4/3/h9, they are designated 4/3/h9a and

4/3/h9b.

The set of generators of 4/3/h9a and 4/3/h9b consists of the

following four twofold rotations: 2(2x, x, 1
6 ), 2(x + 1

2, 2x, 0),

2( 1
2, 0, z), 2(x, 0, 0). It contains four subsets of three twofold

rotations each:

�i� 2�2x; x; 1
6 �; 2�x� 1

2 ; 2x; 0�; 2� 1
2 ; 0; z�;

�ii� 2�2x; x; 1
6 �; 2�x� 1

2 ; 2x; 0�; 2�x; 0; 0�;
�iii� 2�2x; x; 1

6 �; 2� 1
2 ; 0; z�; 2�x; 0; 0�;

�iv� 2�x� 1
2 ; 2x; 0�; 2� 1

2 ; 0; z�; 2�x; 0; 0�:

The ®rst subset corresponds to sphere-packing type 3/4/h3

(cf. above), the second one to 3/4/h1, the third one to 3/4/h2,

whereas the fourth one generates only a tetrahedron of

spheres (the three twofold axes intersect at 1
200). The second as

well as the third subset contain the rotations 2(2x, x, 1
6) and

2(x, 0, 0) that generate the screws around the 62 axes discussed

for type 4/3/h9. Therefore, the properties of both corre-

sponding sphere-packing types are very similar to those of

4/3/h9. For each type, there exist two disjoint non-congruent

parameter regions giving rise to isomorphic sphere-packing

graphs, but sphere packings from the two regions cannot be

deformed into each other without losing sphere contacts. They

are labelled a and b again.
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Table 1
Sphere packings at the boundary of the parameter range of type 3/4/h3:
x, y, z and c/a for the sphere packings with minimal density �min.

Type x y z c/a �min

3/4/h3 0.53120 0.14951 0.10710 1.20898 0.12240

6/3/h29 0.46144 0.10534 0.25 0.36491 0.34157
4/3/h9a 0.45817 0.11429 0.09211 1.07459 0.14815
5/3/h11 0.42265 0.21132 0.06904 2.65099 0.37959
4/4/h18 0.53061 0.26531 0.07959 2.88698 0.31945
5/4/h5 0.66667 0.33333 0.08333 3.46410 0.40307
4/4/h4 0.72402 0.27598 0.08333 2.86805 0.33170
6/3/h3 0.78868 0.21132 0.08333 2.19615 0.45821
4/3/h9b 0.74176 0.17698 0.10212 1.50095 0.39382
5/3/h10 0.72291 0.16318 0.14151 0.99868 0.46396
4/4/h16 0.60779 0.16296 0.20673 0.68268 0.25155
5/4/h13 0.57980 0.15959 0.25 0.55284 0.27718
4/4/h17 0.53657 0.14477 0.25 0.50150 0.25657

Figure 2
Three sphere packings of type 3/4/h3: (b) sphere packing with minimal
density (cf. black square in Fig. 1); (a), (c) sphere packings referring to the
black triangles in Fig. 1.

2 Carlucci et al. (2003a) describe the polycatenated (2D ! 3D) network in
[Ag(sebn)2]X that is built up from `self-penetrated layers'. Here, pairs of six-
membered rings belonging to the same layer are catenated quite similar to the
interwoven screws in 4/3/h9b. The same authors (Carlucci et al., 2003b, Fig. 51)
give an example of two two-periodic nets with different symmetry that are
isomorphic in the graph-theoretical sense but cannot be deformed into
another without cutting some of the edges. These nets, however, do not
contain catenated rings. The simpler of these nets corresponds to the graphs of
certain sphere packings with layer-group symmetry P�4�b�2 (cf. Koch &
Fischer, 1978, type KIa), the other one cannot be related to any sphere packing
of a layer group.
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Fig. 4 shows a projection of the two-dimensional parameter

regions of sphere-packing types 3/4/h3, 3/4/h1a, 3/4/h1b,

3/4/h2a and 3/4/h2b. The one-dimensional region of 4/3/h9a

forms the common boundary of 3/4/h3, 3/4/h1a and 3/4/h2a,

that of 4/3/h9b the common boundary of 3/4/h3, 3/4/h1b and

3/4/h2b.

The two variants of type 3/4/h1 are displayed in Fig. 5. Fig. 6

shows the respective parameter regions on a larger scale. The

blue square in the range of 3/4/h1a corresponds to the

respective sphere packing with minimal density (Fig. 5a). A

sphere packing with minimal density does not exist for

3/4/h1b. The blue triangle indicates the parameters for

Fig. 5(b).

In a similar way, the two variants of type 3/4/h2 and their

parameter regions are displayed in Figs. 7 and 8. In analogy to

Table 1, Tables 2 and 3 describe the sphere-packing types at

the boundaries of the parameter ranges of 3/4/h1a, 3/4/h1b,

3/4/h2a and 3/4/h2b.

5. Other nets and sphere packings with remarkable
properties

In a recent paper, Delgado-Friedrichs & O'Keeffe (2003)

described a computer procedure to determine the combina-

torial as well as the maximal embeddable symmetry group of a

crystal net. In this connection, they consider a net as a graph

with some special properties. Similar to the usual de®nition of

sphere-packing types, only graph-theoretical properties are

Figure 3
(a) Sphere packing of type 4/3/h9a with minimal density; (b) sphere
packing of type 4/3/h9b with minimal density (cf. red squares in Fig. 1).

Figure 4
Projection of the parameter regions of sphere-packing types 3/4/h3,
3/4/h1a, 3/4/h1b and 3/4/h2a and 3/4/h2b.

Figure 5
(a) Sphere packing of type 3/4/h1a with minimal density (cf. blue square
in Fig. 6); (b) sphere packing of type 3/4/h1b (cf. blue triangle in Fig. 6).



taken into account. Additional properties concerning, for

example, the interpenetration or catenations of parts of the

nets are neglected during the computation. Delgado-Frie-

drichs & O'Keeffe (2003) describe two heterogeneous nets

with two kinds of vertex each, with symmetries Ama2 and

P4122. Both nets are built up from tetrahedra that are

connected by additional edges. They are isomorphic in the

graph-theoretical sense `although they cannot be inter-

converted without breaking bonds'.

Even if these two nets are heterogeneous and their maximal

embeddable symmetry groups differ there exists a clear

similarity to the two variants of the sphere-packing types

3/4/h1, 3/4/h2 and 4/3/h9 described above.

Delgado-Friedrichs & O'Keeffe (2003) derived their

example from the so-called CdSO4 net (Delgado-Friedrichs et

al., 2003) by replacing every vertex of the CdSO4 net by a

tetrahedron of vertices. The CdSO4 net itself, however, is

graph-theoretical isomorphic to the sphere packings of type

4/6/t4 (cf. Fischer, 1991a,b, 1993).

If sphere packings of a certain type can be generated in two

Wyckoff positions that belong to different lattice complexes,

normally one of the following conditions is ful®lled: (i) one of

the lattice complexes forms a limiting complex of the other

one, or (ii) the two lattice complexes have a common limiting

complex where sphere packings of this type may also be

generated.
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Figure 8
Projection of the parameter regions of the variants of sphere-packing
type 3/4/h2 and their boundaries: sphere packings shown in Figs. 7(a) and
7(b) are marked by a square and a triangle, respectively.

Figure 7
(a) Sphere packing of type 3/4/h2a with minimal density (cf. green square
in Fig. 8); (b) sphere packing of type 3/4/h2b (cf. green triangle in Fig. 8).

Figure 6
Projection of the parameter regions of the variants of sphere-packing
type 3/4/h1 and their boundaries: sphere packings shown in Figs. 5(a) and
5(b) are marked by a square and a triangle, respectively.
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In the course of the derivation of all sphere packings with

tetragonal symmetry, Fischer (1970, 1971) found two sphere-

packing types with outstanding properties, namely 4/6/t4 (cf.

above) and 4/4/t29 (personal communication). Sphere pack-

ings of type 4/6/t4 with four contacts per sphere correspond to

the following lattice complexes (cf. Fischer, 1991a,b, 1993):

(i) I41/a 16f, I41cd 16b and I�4c2 16i with the common

limiting complex I41/acd 16e .2., and (ii) P42212 8g, P�421c 8e

and P�4b2 8i with P42/mbc 8h m.. as common limiting complex.

There is, however, no common limiting complex of I41/acd 16e

and P42/mbc 8h compatible with sphere packings of type 4/6/t4

and, therefore, type 4/6/t4 comprises no sphere packing with

minimal density. In each of the eight lattice complexes, the

limiting value of the sphere-packing density refers to a point at

the boundary of the parameter region that gives rise to a

sphere packing of type 6/4/c1 with six contacts per sphere.

Sphere packings of this type occur with maximal symmetry in

lattice complex cP built up from all primitive cubic point

lattices. cP is also the common limiting complex of the eight

lattice complexes mentioned above. As a consequence of this

behaviour, two homogeneous sphere packings of type 4/6/t4,

the ®rst of which is generated in P42/mbc 8h or in P42212 8g,

P�421c 8e or P�4b2 8i and the second one in I41/acd 16e or in

I41/a 16f, I41cd 16b or I�4c2 16i, can only be deformed into one

another if one allows additional sphere contacts during the

deformation. The respective sphere-packing graphs, however,

can be interconverted without breaking edges. Fig. 9 shows

two sphere packings of type 4/6/t4 with symmetries P42/mbc 8h

and I41/acd 16e. The maximal combinatorial symmetry of a

corresponding net is higher, namely P42/mmc 2a mmm 000 (cf.

Delgado-Friedrichs et al., 2003). This symmetry, however, does

not allow a sphere packing of type 4/6/t4.

A similar behaviour is shown by the sphere packings of type

4/4/t29 that can be generated in the general positions of

P42/mbc and P42/nbc and twice, with different generators, in

the general position of I41/acd (cf. Fischer, 1993). Again, the

common limiting complex of these three lattice complexes is

cP and it also refers to a point at the boundary of each of the

four parameter regions.

Table 2
Sphere packings at the boundaries of 3/4/h1a and 3/4/h1b: x, y, z and c/a
for the sphere packings with minimal density �min.

Type x y z c/a �min

3/4/h1a 0.45337 0.12740 0.07476 0.90013 0.13918

6/3/h29 0.46144 0.10534 0.25 0.36491 0.34157
4/3/h9a 0.45817 0.11429 0.09211 1.07459 0.14815
5/3/h11 0.42265 0.21132 0.06904 2.65099 0.37959
4/4/h23 0.41446 0.23369 0.05663 2.12657 0.35647
5/4/h24 0.40819 0.25082 ÿ0.01855 1.15110 0.52432
4/4/h24 0.41580 0.23003 ÿ0.03993 0.97670 0.49708
6/4/h5 0.42265 0.21132 ÿ0.08333 0.77646 0.54676
4/4/h25 0.44811 0.14176 ÿ0.08333 0.38651 0.30704
6/3/h30 0.45292 0.12862 ÿ0.08333 0.22594 0.37038
5/4/h25 0.45518 0.12245 0.07079 0.21425 0.33304
7/3/h21 0.45781 0.11526 0.25 0.23052 0.38553
5/4/h26 0.46116 0.10610 0.25 0.35625 0.34142

3/4/h1b² 0.74023 0.17586 0.11362 1.2 0.41315

6/3/h3 0.78868 0.21132 0.08333 2.19615 0.45821
4/3/h9b 0.74176 0.17698 0.10212 1.50095 0.39382
5/3/h10 0.72291 0.16318 0.14151 0.99868 0.46396
4/4/h28 0.72614 0.16555 0.13974 0.99085 0.46383
6/4/h5 0.78868 0.21132 0.08333 0.77646 0.54676
4/4/h2 0.78868 0.21132 0.08333 1.55291 0.42089

² Sphere-packing type without a minimal-density con®guration. Given parameters refer
to an arbitrarily chosen sphere packing of the regarded type.

Table 3
Sphere packings at the boundaries of 3/4/h2a and 3/4/h2b: x, y, z and c/a
for the sphere packings with minimal density �min.

Type x y z c/a �min

3/4/h2a 0.43559 0.09867 0.09899 1.14900 0.14544

6/3/h29 0.46144 0.10534 0.25 0.36491 0.34157
4/3/h9a 0.45817 0.11429 0.09211 1.07459 0.14815
5/3/h11 0.42265 0.21132 0.06904 2.65099 0.37959
4/4/h19² 0.36701 0.18350 0.07491 3 0.40348
5/4/h22 0.33333 0.16667 0.07735 3.23205 0.43201
4/4/h20 0.26269 0.02538 0.08726 2.86499 0.32022
5/3/h2 0.21132 ÿ0.07735 0.09623 2.59808 0.38733
4/4/h21 0.23255 ÿ0.08512 0.10734 2.09506 0.36722
5/4/h23 0.25139 ÿ0.09202 0.16667 1.21561 0.49270
4/4/h22 0.30668 ÿ0.02560 0.20331 2.16449 0.39328
5/4/h15 0.32673 0 0.25 0.69309 0.43565
4/4/h23 0.42259 0.08038 0.25 0.47041 0.31490

3/4/h2b² 0.75 0.17084 0.10972 1.5 0.41940

6/3/h3 0.78868 0.21132 0.08333 2.19615 0.45821
4/3/h9b 0.74176 0.17698 0.10212 1.50095 0.39382
5/3/h10 0.72291 0.16318 0.14151 0.99868 0.46396
4/4/h27² 0.73704 0.16031 0.14527 1.08 0.49412
5/4/h24 0.74918 0.15737 0.14811 1.15110 0.52432
4/4/h26 0.76565 0.17988 0.09967 1.76305 0.42629

² Sphere-packing type without a minimal-density con®guration. Given parameters refer
to an arbitrarily chosen sphere packing of the regarded type.

Figure 9
Sphere packing of type 4/6/t4 generated in (a) P42/mbc 8h xy0 with
x = 1/4, y = 0.2 and c/a = 0.9899 and in (b) I41/acd 16e 1

4 y 1
8 with y = 0.2 and

c/a = 1.9799.



6. Conclusions

Up to the present, there seemed to be a common agreement in

crystallography that a graph-theoretical approach is suf®cient

for the description and classi®cation of three-periodic

connected objects, like crystal nets, sphere packings etc. The

examples given above, however, demonstrate the existence of

probably very few exceptions where graph theory does not

differentiate between cases that are different from the crys-

tallographic point of view. In order to make a distinction

between the sphere-packing variants discussed above, for

example, arguments from knot or braid theory have to be

taken into account in addition.

Note added in proof: In a forthcoming paper by Fischer

(2004), the sphere-packing type 4/3/c32 is identi®ed as a cubic

analogue of 4/3/h9.
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